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1., INTRODUCTION

Creep has been a topic of investigation for many decades. Meaningful
results have been obtained by investigators both from the micromechanistic
approach and the macroanalytical or continuum mechanics approach. A rich
literature is available and references may be found in the books by
Garofalo [1], Odquvist [2], and Rabotnov [3], among others.

Both the micromechanistic and continuum approaches can lead to fru‘tful
results and each can benefit from the other. '"The micromechanistic approach
provides knowledge of the processes that control creep and provides guide-
lines for defining more clearly material properties and for designing better
materials for specific applications. The macroanalytical approach can pro-
vide basic relations that are broad in scope and can lead to improved pro-
cedures for designing structures."*

The purpose of this report is to discuss further the behavior of creep
in metals using the approach of continuum mechanics. Several theories have
been proposed in the literature to describe creep using this approach. How-
ever, there still exists an unresolved problem related to the role played by
strain-hardening during creep. This problem is important in the investiga-
tion of creep subject to variable stress.

In most investigations, the subjects of stress-strain relation and
creep are treated separately, so that they do not bear direct relationship
between them. In the writers' view, the aforementioned fact contributes
greatly to the difficulty associated with the investigation of creep under
variable stress. Fortunately, recent progress in the understanding of the

strain-rate and strain-rate history effect in the theory of constitutive

*
The words of Garofalo [1] are being quoted.
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equation has made it possible to devise a unified approach which would bring
diversified material behaviors, such as constant~strain-rate stress-strain
relation, creep, and stress relaxation into a common workframe.

The present report is written with such thought in mind. This viewpoint
is shared by such research workers as Valanis and Lalwani [4] and Cernocky
and Krempl [5]. In this unified approach, creep is viewed as a special case
of the general mechanical behavior of material. The constitutive creep
equation is reduced directly from the general constitutive equation of the
material under study but with the condition of constant stress imposed.
Since the constant-strain-rate stress-strain relation is also reduced from
the same general constitutive equation, it is evident that a correlation
between the two areas of interest can be established. Thus, material con-
stants and functions determined from the constant-strain-rate stress-strain
curves will appear without aiteration in the creep equation. The number of
unknown parameters in the creep equation is thus greatly reduced.

In this report, Valanis' endochronic theory of viscoplasticity {6,7,8]
is applied to tackle the problems associated with creep. The endochronic
theory has been previously applied to investigate the creep behavior of
metallic materials. Valanis and Lalwani [4] developed a nonlinear evolution
equaticn for the thermodynamic internal state variables using the concept of
absolute-reaction-rates theory. The equations are then applied to predict
creep at moderately large strains under constant stress from the experimental
data obtained in stress relaxation. Wei [9] investigated creep using the
Gibbs free energy formulation and the stress-defined intrinsic time.

The approach taken in this investigation is different from those men-

tioned above, although all are within the framework of the endochronic
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theory. In particular, the concept of intrinsic time introduced by Valanis
[8] is employed in this investigation.

The problems of creep recovery ard stress relaxation are also treated
using equations derived from the same general constitutive equation by
imposing appropriate constraint for each case. It is shown in this report
that the theory agrees quite well with experimental results of Wang and

Onat [10] for Aluminum 1100-0 at 150°C (300°F).
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2. BRIEF SUMMARY OF ENDOCHRONIC THEORY
OF VISCOPLASTICITY
The endochronic theory of viscoplasticity developed by Valanis {6,7]
is based on the notion of intrinsic time and the thermodynamic theory of
internal variables. Since most of the materials are, in general, strain
history dependent, a time measure d; is defined such that

2 2
di™ = Pijkzdeijdekz + g dt (1)

where eij is the strain tensor and Pijkl is generally a function of eij and
a positive definite material tensor; g is a material function of eij; and
t is the real time. In addition, a time scale z(Z) is introduced such that
dz/d¢ > 0.

This concept together with the thermodynamic theory of the internal

variables gives the following explicit constitutive equation for isotropic

materials under small isothermal deformation:

z ] z de
= - 2! kk ' -t _._i.i '
aij 61_1 L A(z - 2') 5z’ dz' + 2 X u(z - z') 2 dz (3)
where cij is the stress tensor, eij is the deviatoric part of sij; 61j is

the Kronecker's delta; and A(z) and u(z) are heredity functions. But the
definition of intrinsic time in equation (1) has led to difficulties in
cases where the history of deformation involves unloading. Valanis [8]
has since introduced a new concept of intrinsic time to overcome these
difficulties. In the one-dimensional case the new intrinsic time 7 is

defined as
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- lde - k. 82 :

dg = |de = k; E, (4) %

where kl is a positive scalar such that 0 < kl <1 and E0 is the elastic %
¢
modulus. Generalizing to three dimensions and r internal variables, a %
"%
strain like tensor eij is defined as %
%13 ™ €13 7 Py ke (5)
and “g
Ky
Us = ®13 "2, 1 (6)
where ¢ijk£ is a positive definite symmetric fourth-order tensor; Qij is jg
the deviatoric part of eij; o is the shear modulus; and sij is the devia- é

toric part of ¢ Based on the formulation in reference [6], the response

i3’ f
of metals in the small deformation region with an elastic hydrostatic re- :
sponse can be written as §

okk = 3K €k ¢))
and é
z Je
s, =2 u(z - 2') -—Jg-dz' (8)
i) 0 1}

where K is the bulk modulus. If the function p(z) is defined as

u(z) = Mo G(2) 9)
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where G(0) = 1, and using the Laplace Transformation technique, equation (8)

together with equations (6) and (9) reduce to

z Q
84y " Zuo I p(z - 2') A 4z (10)
0

where p(z) is related to G(z) by the integral equation

z dc
p(z) - kl I p(z - 2') az' dz' = G(2) (11)
0

*
The solution of this integral equation in the case of two internal variables
is obtained by the Laplace transform technique under the assumption of kl

approaching to 1. The result is

E
Ey p(2) = a—: 8(z) + E; e %2 (12)

where ao, a, and El are material parameters and &§(z) is the delta funztion.
In the case of uniaxial stress, the constitutive equation is given by

o= Eo I p(z - 2") ﬁ%; dz' (13)
0

where 6 = ¢ ~ él is the plastic strain, and equation (4) can be written as
0

dg = |de] (14)

*Because of the complexity of the constitutive equation and the fact that
the number of material parameters increases with the number of internal
variables, it is natural to strive for the minimum number of internal
variables which will suffice in the accurate and acceptable prediction
of the material response. Two internal variables are used throughout
this work.
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The new form of the endochronic theory has recently been extended by
Wu and Yip [11] to describe the strain rate and strain rate history effects
of material behavior. In this connection, it was shown that the intrinsic

time is governed by the relation
dg = k(8) |de] (15)

where 8 is the plastic strain rate.
By combining equations (12), (13), and (15) it was shown that yield

stress oy can exist and is related tc the strain-rate by

0

o
o - 16)
Y k(8 dz)

where c; is the initial yield stress at reference strain-rate. Making use

of the expression (Ref. [6])

z = % 1In(1 + B7) (17)

where B is a material constant, the constant-plastic strain-rate stress-strain

relation was obtained

-n
o= oy(l + 819) + (oo - oy)(l + Ble){l - (1 + 816) ] (18)
in which

Et
81 = kB = 5 (19)

o

a

n 2 +1 (20)

and % i8 the intercept of the asymptotic line of equation (18) with the

stress axis; Et is the tangent modulus of the aforementioned asymptotic line.
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The strain~-rate sensitivity function k(é) was determined from the

K N YA by KR

experimental constant-strain-rate stress-strain curves. It was found that

the following function fit the data nicely for annealed aluminum in the

strain-rate range of 1074 ~ 100 &L .
. ] ,
k(f) = 1 - Bs log {— (21)
eR
In equation (21), Bs is a material constant and éR is a reference strain-rate.
The expression (21) was also shown in the same report to be applicable to
4 1 -1

mild steel in the strain-rate range of 100 ~ 100 s .
In Wu and Yip [11] this form of constitutive equation was also used to
investigate the strain-rate history effect by means of low-high and high-low

strain-rate change loading sequences. i
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3. CREEP OF ALUMINUM 1100-0

The constitutive equation (13) and the new definition of intrinsic

time given by Eq. (15) are now applied to describe the creep phenomenon.

To achieve this objective, a careful control of the entire creep test is

in order. In a conventional creep testing, a weight pan loaded with weights
is gradually released to avoid impact on the specimen. The creep strain is
then the additional strain developed over the initial strain as time elapses.
The initial strain referred to is developed initially by the dead weights.

The initial strain history is usually not recorded in the creep test.
Due to this nature in experimentation, any theoretical work aiming at the
description of the creep curve is at best an approximation.*

In the present representation it is assumed that a creep test consists
of two stages. The first stage is assumed to be a rensile testing at con-
stant plastic strain rate éo' During this stage the intrinsic time increases
from zero to z, The second stage is the creep stage where the stress is

kept constant at o* and the intrinsic time increases from z, to z as creep

strain developes. Thus, equation (13) becomes

z
o 0 '
- o vy 98 ' -a(z-2') do .,
o% Eo J §(z -~ 2') iz’ dz' + f El e 3z’ dz
0 o
z z
_ gty 98 4,0 -a(z-z') de . ,
+Ej L 8§(z - z') iz’ dz' + L E, e 3z 42 (22)
o) o

in which the fu.ction p(z) is given by equation (12).

*In the case of long term creep, the effect of the initial strain history is
negligible and the stress-time history may be represented by the Heaviside
step function. 1In the case of short time creep, the initial strain history
is found to have significant effect on the subsequent creep behavior.
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It should be noted that during the first stage of loading for
aluminum, the following equation must be satisfied
3,3 ln(1+ 8Kk o) (23)

where 8 is a material constant that appeared in equation (17) and is
determined from the quasi-static stress-strain curve; ko - k(éo); and 90 is
the plaatic strain at the end of the first stage when z = z,.

Figure 1 shows a typical initial strain history recorded during a
conventional creep test. Approximating this initial strain history by a

straight line, it is seen that at z = z 'de/dt|z_z ¢ 50. Since stress
o

depends on the strain-rate and its history, the actual stress at z, is not
the same as that calculated using equation (18) by assuming a constant Go'
Therefore, the stress must be correctei at z, to agree with reality. This
correction of stress will be accounted for in the subsequent discussion
concerning the second stage of the creep test. It is remarked, however,
that if the creep test is well-controlled so that the .irst stage of test
is truly a constant éo test. The correction in stress mentioned above 1is
then not necessary.

Equation (22) is the constitutive creep equation which may be simplified

by letting
Z _a(z-z') de
R(z) = El J e ‘d_z'f dz' (24)
o
Thus, equecion (22) reduces to
*
o" = 1(2) + R(2) + g0 (25)
where
I(z) = €, e 0% (26)
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and

E (a48)2
1 1 0
cl- ko (u+8)3. -1‘ (27

It may be shown by differentiating (24) that

drR _ de _
dz El dz oR (28)

which leads to
E c (A-a)2 c Az
R(z) = _e-Az _% (__l_) [G(A-a)z - e o]_ _12_ (eAz - e o) (29)
)
y

A-a

by use of Eq. (25). The constants appeared in the above eq ~tion are given

by
E
A= — <4+ (30)
00
y
Ey
—_— *
c2 - e o (31)
y

During the creep process, the intrinsic time is defined by
dg = kc(é) |de| (32)

vhere kc(é) is the strain-rate sensitivity function under creep condition.
The function kc(é) is different from k(é) in general, where the latter
function was defined !n (15) under constant-strain-rate condition. Since
the creep behavior depends on stress as a parameter, the runction kc(é) may

also depend on stresz as a parameter.
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Using (32), (26) and (17) Equation (25) reduces further to

-

H o Bz -0z
kc(e) - oy e /(o - R(z) - Cl e ) (33)

Given a function kc(é) at the strain rate range of creep, equation (33) can
thus lead to the determination of a creep curve.

The strain-rate sensitivity function kc(é) will now be discussed. It
is assumed that the functional form of equation (21) is siill valid for
creep. Thus,

kc(é) =1-8 1In (—9—) (34)

o2

in which 8 denotes the creep rate and the constant Bc depends on stress as
a parameter. The dependence of Bc on stress should be further investigated
experimentally.

The creep curves are determined by use of the Newton method of finite
difference. The algorithm used in the calculation is presented in Appendix
(A).

To compare the theory with experiment, two sets of experimental results
are needed. They are the set of constant-~strain-rate stress—~strain curves
and the creep curves. These two sets of data should be obtained for the
same material with the same heat treatment and tested at the same constant
temperature. The only experimental data that are available to the authors
are those for Aluminum 1100-0. Creep tests were conducted at 150°C (300°F)
by Wang and Onat [10] and the constant-strain—raté stress-strain curves
were recorded by Senseny, Duffy and Hawley [12] at 25°C (298°K) and 250°C .
(523°K) for shear-strain rates of 2 x 10-4 s—l and 3 x 102 s-l. To determine .-

the material constants, a set of experimental constant-strain-rate stress-strain
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curves at 150°C were estimated by linear interpolation from the curves of
Ref. [12].

In the creep tests by Wang and Onat specimens were prepared from two
different rods for the tests referred. Thus, different creep curves were
obtained for the two groups of specimens even with the same heat treatment
and same constant stress. The material properties for the two groups of
specimens are therefore considered to be slightly different. The following

*
two sets of material constant have been determined:

Specimens Group I Specimens Group II
b = 1.30 x 107 o7 6 = 1.40 x 107 g71
6= 1.20 x 107" g7 6, =1.20 x 107 g7t
a = 4.622 x 10° a = 5.714 < 10°
B = 4.444 B = 5.494
E, = 6.596 x 10° MPa (9.566 x 10° ps1) E, = 8.154 x 10° MPa (1.183x 10° ps1)
B, = 3.643 x 1072 B, = 3.339 x 1072
E = 6.895 x 10* MPa(1.0 x 10’ ps1) E = 6.895 x 10° MPa (1.0 x 10’ psi)
99 = 13.790 MPa (2000 psi) oy = 13.790 MPa (2000 psi)

The theoretical and experimental results are shown in Figures 2-4 for
specimens Group I and in Figures 5-7 for Group II. The values for Bc and
the stress correction mentioned earlier are listed in Table 1 for each stress
level. The results show that good agreement has been obtained for Group 1

specimens. For Group II, only the three cases with intermediate stress

*The constants a, B, E, E._, oo, Bg and é are determined from the constant-
strain-rate stress-strain curves. The strain rate 8 du..ng the first stage
of the creep test must be chosen so that 6, and z, afe consistent with
equation (23). Thus, 0o is the only parameter which needs to be assigned
in the description of a conventional creep test.
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levels have achieved reasonably good agreement using the constants listed. %

The agreement is not good for the two lower stress curves at small time and
also for the curve with high creep stress. It should be noted that the
present theoretical results have been obtained by assuming that only two

1 : internal state variables are significant. To predict the creep curves at

-

widely varied stress levels, an additional internal variable may have to be
used. Whether this is indeed the case awaits further investigation.

It may be concluded that for Aluminum 1100-0, creep depends on the
effects of strain-hardening and strain-rate history. If Bc is dependent on
stress as mentioned above, the proposed theory can reasonably describe the

creep curves with moderately varied stress levels.
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4. CREEP RECOVERY

In this section, creep recovery is discussed by means of the constitu~
tive equation (13) with the Kernel function given by (12). The specimen is
first subject to creep at stress o* for a duration of time and then the
stress is reduced to o**. The integral in equation (13) is decomposed into
four integrals each representing a stage of the creep-creep recovery phenom-

enon. Thus,

o 1 1
+I +J +I (35)
z Z z

The first two integrals on the right-hand side of (35) describe the creep
stage which was discussed in the previous section. The stress is then
reduced from o* to o** when the intrinsic time reaches z,. The third inte-
gral represents the instantaneous elastic response during unloading. Since
the intrinsic time increases only with the plastic strain the value of this
integral is zero. Finally, the fourth integral represents the recovery
stage.

The first integral may be integrated to give I(z). The second integral

may be denoted by

“1 do
Rl(z) = Eo J; p(z - 2') Ezv-dz' (36)

o

It can be found by differentiation that

dr, (2)

3z " —aRl(z) (37)
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whose solution is
R (2) = C e 2 (38)
waere
c - -e-(A-a)zl El C1 e(A-cx)zl i e(A-a)zo ) EZ eAz1 ) eAzo
0o A-a A
y
nd (39)
Rl(zl) - R(zl) (40)
The fourth integral is expressed as
z de o db
- L1y 8Y ' - av
Eo J p(z - 2z") 3z’ dz oy daz + R2(z) (41)
z
1
where
R, (z) = E ’ e-“(z -z') 4o dz' (42)
2 1 2 dz'

1

Therefore, the constitutive equation for creep recovery may be rewritten as

o = 1(z) + R (2) + o; % + R,(2) (43)
or
[- AN S - -
i e (o I(z) Rl(z) RZ(Z)] (44)
y

The function Rz(z) may be found in closed form, which may be achieved

by different.ating equation (42) to obtain
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. e st h’mm;



ot e

17
dR,(2)
2 de
s " E 3z - oR(2) 45)

*

Upon substituting (44) into (45), the resulting equation can be integrated.

The result is

E C (A-a)z C' Az
Rz(z) - -e-“z ;% (A —1a) [e(A-a)z -e l] - -Kz- (eAz -e 1) (46)
y

where
] .
C =C +cC (47)
' E
1 k%
C2 = O (48)
o
y
and
Rz(zl) = (0 (49)

Therefore, it is obvicus from equation (44) that %% is a function of 2

* *k
only if 0 and 0 are specified. Using now equations (32) and (17),

equation (44) can be written as

. oo eBz
M ORFE 3z (50)
o - I(z) - Rl(z) - Rz(z)

in which k:* denotes the function kc(é) during the stage of recovery. The
significance of sign "#" will be discussed later in this section. It is
noted from equation (50) that k:* is a function of z.

A procedure similar to that used for creep stage is now followed.
Assuming that the relation (32) holds also during the stage of recovery,

the strain-rate at recovery may be expressed by

R Y et
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(l-k**(z))/Bc

8(z) = by @ (51)

An algorithm of numerical calculation for creep recovery is presented in

Appendix (B).

The experimental results of Wang and Onat for Aluminum 1100-0 are again

used for comparison. Three examples were considered in this calculation.

The first (Test I) involved a specimen crept at constant stress of 24.13 MPa

(3500 psi) for 4 hours and then unloaded to a stress of 1.38 MPa (200 psi)

which was far below the yield stress of 13.79 MPa (2000 psi). In this cal-

culation, the equation (50) took the minus sign since the normal strain

recovery effect was predominant at such a low stress of o** = 1,38 MPa.

The normal strain recovery effect will be elaborated later in this section.
For this case, the material constants were determined by the method

described in the previous sections as follows:

6 = 1.20x 207 o7t

éR «1.40 x 107 st

8 = 5.259

a = 4,944 x 10

E, = 7.06 X 10° MPa (1.024 x 10° psi)
B, = 3.858 x 107

Both theory and experiment are shown in Fig. 8 for comparison.

The second and the third examples (Test II and III) involve specimens
loaded at constant stress of 27.58 MPa (4000 psi) for one and four hours,
respectively, and then unloaded to a stress of 25.86 MPa (3750 psi). 1In
both cases, equation (50) took the positive sign since the forward creep

effect was predominant at the stress specified (25.86 MPa). The details

G
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concerning the forward creep and the recovery effects will be further
discussed.

For these two cases, the material constant were determined as:

b = 1.20 x 1074 571
b, = 1.40 x 107 o7
8 = 5.49
a= 5,714 x 102
E, = 8.16 10> MPa (1.183 x 10° psi)
B = 3.339 x 1072

Figure 9 shows the theoretical and the experimental results. It is seen
that the agreement is quite good for a short time. The results slso show
that the amount of forward creep during the process of recovery is signifi-
cantly affected by the length of creep time betore unloading. For the same
creep condition, the earlier the unloading takes place the greater the for-
ward creep rate.

In Test 1I, the theoretical curve rises above the experimental curve
four hours after unloading has taken place. Its implication is that the
present theory using two internal state variables is not adequate in de~
scribing creep recovery at larger time. For better accuracy additional
terms (corresponding to more internal state variables) may have to be

introduced in equation (12).

The nature of creep recovery will now be further discussed. Experiments

%k

show that a critical stress Oor exists. If during creep recovery, ¢ > Ocr

then forward creep will occur, i.e., the recovery curve has a positive slope.

*k
If 0 < Oup? then normal stra!n recovery is found which corresponds to the

curve with negative creep rate. This experimental finding has been reported
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in the literature (see, for instance, Ref. (1], p. 24). In particular the
experimunts or Wang and Onat [10] also confirmed this observation. In the
three examples mentioned earlier in this section, Test I is the case of

"%
normal strain recovery with ¢ < Oy and Tests II and III are the cases of

R
forward creep with ¢ > Op

The observed phenomena of forward creep and normal strain recovery

will now be explained using the present theory. Just before unloading,
* -
the stress is 0 and the intrinsic time is denoted by z,.

the following equation is obtained

a8

az (52)

* - - o
o = I(zl) + R(zl) + oy

2

*k
Immediately after unloading, the stress is ¢ , the intrinsic time is zI,

and from (43) the equation below is obtained

*k + + o dé
] -I(z1)+Rl(zl)+oy izl + (53)
z
1
But I(z), R(z), Rl(z), and Rz(z) are all continuous so that at 2
Rl(z;) = R(zz) and I(zI) = I(zz). Therefore, equations (52) and (53)
can be combined to yield
* kk de o de
¢ -0 =0 gl -"% 4 + (54)
% 1
Furthermore, by using equations (32) and (17), it may be found that
o -
Bz
do| . Xy A
dz| - % ¢ (55)
zy c
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and
o +
gl _,% Fa
dz| + * o e (56)
5 c

The "+" sign in (56) corresponds to the absolute value sign in equation (32).

In the case of forward creep, where 8> 0, the positive sign should be used;
whereas the negative sign i{s used when the case of normal strain recovery
is being considered, i.e., when 8 < 0.

Substituting equations (55) and (56) into (54), the following expres-

sion for the strain-rate sensitivity function is obtained

* *k
1 3] -
k = 4 1 ._].'. - 9____0... (57)
¢ kc o le

o e

y

* Rk

In the special case of no unloading, i.e., 0 = ¢ , equation (57) leads
Rk

to kc - kc (only the positive sign is meaningful due to positive creep

rate), which of course represents the case of creep.

When at zI. equation (50) is reduced to

] - (58)
o = I(z,) - R(2))

Utilizing this equation, the following observations may be made. On the
right-hand side of equation (58), the denominator is zero when o** = I(zl)
+ Rl(zl). Therefore, a critical stress 0., may be defined so that when

o** =0 . k:*(zI) approaches to infinity, which in turn gives g =0 by use

of equation (51). Thus, creep recovery at the critical stress Or will

result in a zero strain recovery rate at z,- For z > 205 the rate of
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recovery is governed by equation (50) in which Rz(z) ¢ 0. For o** > ocr’
the denominator is greater than zero, thus the plus sign must be chosen in
(58) for k:* to be positive. As mentioned earlier, the plus sign corre-
sponds to the case of forward creep. On the contrary, if a** < ocr’ then
the minus sign should be used, which of course corresponds to the case of
normal strain recovery.

A further observation related to equation (58) is that in the case of
forward creep, the greater the stress a** is, the smaller is k:*; hence,
the greater is the rate of forward creep. In the case of normal strain
recovery, the reverse is true, i.e., the smaller the stress o** is, the

*k
smaller is kc ; thus, the greater is the rate of recovery. The above

observation agrees with Garofalo [1] and Wang and Onat [10].
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5. STRESS RELAXATION

A preliminary investigation of stress relaxation is reported in this
section. Due to the non-availability to the authors of the stress relaxa-
tion data for Aluminum 1100-0 at 150°C (300°F), only the theoretical results
will be discussed.

To treat the subject of stress relaxation using the present theory, it

is recalled that

de = de - % (59)
[+]

During the process of stress relaxation, the total strain is kept constant.

Thus,
. O
0= - z (60)
o

and the plastic strain-rate is seen to be related to the rate of change of
stress during stress relaxation.

The constitutive equation governing streass relaxation is again reduced
from the general constitutive equation given by (13). The relaxation test
i8 divided into two stages as in creep test. The first stage is that of
the constant-strain-rate tension test and the second stage is the stage of
str~ss relaxation.

It may be shown that the following governing equation can be reduced

directly from equation (13):

o(z) = I(z) + R(z) + o; :—: (61)

vhere I(z) and R(z) were previously defined in equations (26) and (24).
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The symbol z, is again used to denote the intrinsic time when the second
stage of test begins.
For stress relaxation, the folinwing equations are again obtained
dR(e) _ p 4O _
dz " Eigg "~ R (62)
8 = d-foa) - 1(2) - R(D)] (63)
o

y

These equacions may be combizned to yield a first order differential equation

in R(z). The following solution for R is obtained by requiring that R(zo)'-O:
I's

. \E c. \ (o (A-a)z z '
R=-p¢ Az i—l (r—_*-;)‘.e“ Wz _ e % - L eAz g(z') dz') (64)

(]
g
y [+

vwhere A and C, are defined in (30) and (27) and

1
E,
g(z) = ~ o(2) (65)
(¢}
y

During the relaxation process, the intrinsic time is defined by
dg =k (8)|de| (66)

vhere kr(é) is the strain-rate sensitivity function under the condition of
relaxation. This function must be different from kc(é) vwhich is the strain-
rate sensitivity function for creep. During relaxation the total strain is
kept constant and this constraint should be reflected through kr(é)' It

is anticipated that kc(é) and kr(é) are related. However, no explicit
relationship between these two functions can be obtained without further

experimentation.
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It 1s assumed ihat the function kr(é) takes the fnllowing form
: 6
k (6) =1 -8 1In (—) (67)
T r H
R

vhere Br may depend on the magnitude of plasiic strain when relaxation stage
begins. The fact that the theoretical results to be presented later agree
qualitatively with the usual stress relaxation curves indicates that the
functional form given by (67) is reasonable.

It may be obtained from (63) and (66) that

o° es:
- Y
k (&)= 5@ - 1) - R (68)
In addition, equation (60) leads to
. ., (1-k )/8
o(z) = -R 6 e T T (69)

Thus, equations (68) and (69) govern the relaxation behavior of a material.
An algorithm for the numerical calculation of the relaxation curves are

given in Appondix (C). The theoretical results are shown in Fig. 10.
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6. CONCLUSIONS

The endochronic theory of viscoplasticity has been applied to discuss
creep, creep recovery, and stress relaxation at the small strain and short
time range. The following conclusions may be drawn from this investigation:

(1) The governing constitutive equations for constant-strain-rate
stress—-strain behavior, creep, creep recovery, and stress relaxation have
been derived by imposing appropriate constraints on the general constitutive
equation (13).

(2) A set of material constants has been found which correlate strain-
hardening, creep, creep recovery, and stress relaxation.

(3) The theory predicts with reasonable accuracy the creep and creep
recovery behaviors at short time.

(4) The strain-rate history at prestraining stage affects the subse-
quent creep.

(5) A critical stress Oer has been established for creep recovery.

If ,** > Ocr? forward creep will occur. If o** < Oup? then normal strain
recovery will take place.

(6) The correlation between the st ain-rate sensitivity functions

k(é), kc(é), and kr(é) cannot be obtained without further experimental

investigation.
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APPENDIX (A) - Algorithm for the Computation
of Creep Curves

Based on equations (33) and (34), the creep curves are computed by use

of the Newton method of finite difference.

for computing creep curves obtained by the conventional method of creep

*
testing:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7.

Determine the material constants a, 8, Eo’ El, a;, Bs’ and éR from
the experimencal constant-strain-rate stress-strain curves.

Compute the plastic strain eo =€, " o*/Eo where € and o* are
known values.

Try and error procedure is used to determine éo‘ For each éo chosen,
co and z can be computed by use of equations (21), (32), and (23).
The rest of the procedures are then followed to compute the creep
curve. However, if the computed creep curve does not agree with

the experimental curve, a new value of éo is assumed.

(n) *

For each step, compute kén)(é(n)) by substituting z and ¢ into

equation (33), where n starts from zero and is a positive integer.

Use equation (34) to compute é(n).

(n) _ «(n)

Choose a reasonably small step size At and compute A8 = 9 At

(n) _ ké“)Ae(“).
0) (0)

4 = co’ z =2z, then compute

and Ag

Set t(o) = 0,

D) L @)y g

* [ ] L]
For well controlled creep test, i.e., 6, = constant, the quantities 8, and

8y are known. The intrinsic time z, and the stress o* can be calculated
from equations (21), (23), and (18). Noting that the total strain at the
beginning of creep stage is €, = 6, + 6*/Eo, the computation may proceed
by following steps 4 through 8.

The following steps are suggested

T e+ o e A A
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e(n+1) e(n) + Ae(n)

(o) | o(mtl) | (m)

c(n+1) c(n) + A;(")

(nt+l)
g 1+ 5™

The e(n) V8. t(n) profile is the computed creep curve.

(n+l)

Specify a terminal time T. I. t is greater than T, stop

the computation. Otherwise, return to Step 4 with t(n), e(“)

e(n)’ :(“) (n) (n+1), e(“ﬂ), e(n+1), ;(n+1)’

(n+1)

»

, and z replaced by t

and z » respectively.
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APPENDIX (B) - Algorithm for the Computation
of Creep Recovery Curves

Curves of creep recovery may be computed from equations (50) and (51)

using the following procedures:

Step

Step

Step

Step

Step

Step

Step

Step

Step

Use all previously determined material constants.

Calculate the critical stress ocr - I(zl) + Rl(zl)'

*k *k
Compare ¢ with L If o > O.p* Use positive sign in equation

(50). Otherwise, the negative sign should be used.

**(n) (n) k%

For each step, compute kc by substituting 2z and o into

equation (50), where n starts from zero and is a ositive integer.

Use equation (51) to compute é(n).

Choose a reasonably small step size At and compute Ae(“) = é(n)At

and ac™ = k:*(“)Ae(“).

(0) (@ g, O

Set t = tl, = z. where t, is the time at the

1 1

* k%
onset of recovery. Compute e(o) =e, - (0 -0 )/Eo, where s(o)
and el are the recovery and creep strain at tl’ respectively.
Compute t(n+l), 6(n+1), e(n+1), c(n+1), and z(n+1) using the

equations in Step 7 of Appendix (A). The e(n) vs. t(n) profile is

the computed creep recovery curve.

Same as Step 8 of Appendix (A).
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APPENDIX (C) - Algorithm for the Computation
of Stress Relaxation Curves
Equations (68) and (69) are used for the compuation of the stress
relaxation curves. In the compuation of R(z) from (64), the function g(z)

is assumed piece-wise linear. The following steps are followed:

Step 1: Use same material constants as those in Appendix (A).

Step 2: Compute 60, Co’ and zo using Steps 2 and 3 of Appendix (A).

Step 3: When n = 0, set o(n) - c:, ;(n) = ;O, z(n) =z, t(n) = 0, where
n starts from zero and is a positive integer, oz is the initial
relaxation stress.

Step 4: For each step, except n = 0, compute R(z(n)) with the assumption

of piece-wise linear o(z):

- D (n-1)

o(z) = ) (2 ) + o0

If n= 0, set R(z(n)) = 0,
(n)

r

(n) (n)

Step 5: Compute k by substituting z'°, ¢ 7, and R(z(n)) into

equation (68). n starts from zero in this computation.

* (n)

Step 6: Calculate stress rate ¢ from equation (69).

Step 7: Choose a reasonably small step size At and compute the following:
8o(™ = 50y,

k(n) a(n)
r

ag™ ——=— 8t
(o]
O (n)
1+ 8¢
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Step 8:

Step 9:

33

Compute

t(n+1) (n) + At(n)

=t

a(n+1) = o(n) + Ao

(n)

c(n+1) (n) + A;(n)

=3

L0t _ (n) (n)

+ Az

(n)

The © vs. t

(n)

profile is the computed stress relaxation curve.

1f ¢ (0D

Specify a terminal time T. is greater than T, stop the

(n)

’

computation. Jcherwise, return to Step 4 with t(n), c(n), 4

(n) (n+1)’ o(n+1) c(n+1)’ z(n+1)

and z replaced by t » respectively.
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TABLE 1

Corrections in Creep for Various Creep Stresses

Specimen Creep Stress 8 Stress Correction
Group MPa (psi) c MPa (psi)

I 24.13 (3500) Bs -1.990 (-288.68)
25.86 (3750) 0.71 8s -1.643 (-238.34)

11 17.24 (2500) Bs +0.454 (+65.80)
20.68 (3000) BB ~-0.869 (~125.97)
24.13 (3500) Bs -1.724 (-250.06)
25.86 (3750) 0.79 Bs -1.628 (~236.06)
27.58 (4000) 0.43 Bs ~1.467 (-212.70)

——————
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FIGURE CAPTIONS

Initial Strain History in Creep Tast

Constant-Strain-Rate Stress-Strain Curves of Aluminum 1100-0 at 150°C
(300°F) - Specimens Group I

Strain-Rate Sensitivity Function k for Group I

Creep Curves for Aluminum 1100-0 at 150°C (300°F) - Specimens Group I
Constant-Strain-Rate Stress-Strain Curves of Aluminum 1100-0 at 150°C
(300°F) - Specimens Group II

Strain-Rate Sensitivity Function k for Group 11

Creep Curves for Aluminum 1100-0 at 150°C (300°F) - Specimens Group II
Creep Recovery Curve for Aluminum 1100-0 at 150°C (300°F) - Test 1
Creep Recovery Curves for Aluminum 1100-0 at 150°C (300°F) - Tests II
and III

Re laxaten.
Theoretical Stress Relatiems Curves
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